\$5.1 & 5.3 <u>GRAPHS & TRANSFORMATIONS OF SINE, COSINE, AND</u> <u>TANGENT FUNCTIONS</u>

KEY CONCEPTS

From the previous unit, you can construct a table of values of the trigonometric functions for the multiples of $\pi / 4$, or 45° , between 0 and 2π inclusive.

Angle, x	y = sin x	y = cos x	y = tan x
0			
<u><u> </u></u>			
$\frac{\Pi}{2}$			
$\frac{3\prod}{4}$			
П			
<u>5∏</u> 4			
<u>3∏</u> 2			
$\frac{7\Pi}{4}$			
2∏			

Examples:

- Y = 3 cos x What is the amplitude?
- 2. Y = 4 cos x
 What is the amplitude?
- 3. Y = 3 sin 2x What is the period in degrees?
- 4. Y = sin 10xWhat is the period in degrees?
- 5. Y = 2 tan 5x What is the amplitude?
- 6. Y = 3 cos (x 30) What is the phase shift?

- 7. $Y = -5 \sin 3(x + 20)$ What is the period in degrees?
- 8. Y = 6 cos 2(x + 60) + 1 What is the phase shift?
- 9. Y = 6 tan 2x What is the period in degrees?
- 10. Y = 2 cos (5x 60) What is the phase shift?
- 11. Y = 2 sin 2(x + 10) + 3
 What is the vertical translation?
- 12. Y = 3 tan (2x 60) 3 What is the period in degrees?

13. Sketch y = 1.5sin(2x + 6).

14. Sketch y = -2cos(2x + 3).

15. Transform the function $f(x) = \sin x$ to g(x) such that g(x) has an amplitude of 3, a period of $\frac{3\prod}{2}$, a phase shift of $\frac{\prod}{6}$ to the left, and a vertical translation of 2 units downward.

\$5.2 GRAPHS OF RECIPROCAL TRIGONOMETRIC FUNCTIONS

KEY CONCEPTS

Copy and complete the summary table.

y = cscx	y = secx	y = cotx
	y = cscx	y = cscx y = secx

\$5.4 <u>SOLVE TRIGONOMETRIC EQUATIONS</u>

KEY CONCEPTS

- Trigonometric equations often have multiple solutions. Ensure that you find <u>all</u> solutions that lie in the domain of interest.
- Quadratic trigonometric equations can often be solved by factoring.
- You will need to use the exact values for the trigonometric ratios of special angles and their multiples. Refer back to your unit circle if you forget.
- When solving for all solutions within the domain of interest, you will also need to make use of the CAST rule.

Examples:

1. Determine the exact solutions for the trigonometric equation $2\cos x + 1 = 0$ in the interval $x \in [0, 2\prod]$.

2. Solve $(3 \cos x + 7)(-2 \sin x - 1) = 0$ on the interval $x \in [0, 2\Pi]$.

3. Solve $2\sin(x)\cos(-x) = 2\sin(-x)\sin(x)$ on the interval $x \in [0, 2\prod]$.

4. Solve $\sin^2 x + \sin x = 6$ and find <u>all</u> solutions.